

EFFECT OF POST EMERGENCE HERBICIDE APPLICATION ON WEED FLORA IN TRANSPLANTED *BASMATI* RICE

Anita Jaswal¹ and Arshdeep Singh²

¹Department of Agronomy, School of Agriculture, Lovely Professional University, Phagwara-144 411 (Punjab), India. ²School of Agriculture, Lovely Professional University, Phagwara - 144 411 (Punjab), India.

Abstract

An experiment was conducted in School of Agriculture, Lovely Professional University during June 2015 to November 2015 to study the effect of post emergence herbicides on weed flora in transplanted rice. The treatments include Almix, Azimsulfuron, Bispyribac sodium, Fenox-a-prop-p-ethyl, hand weeding and control. The results showed that grasses were the predominant weed flora followed by broad leaf weeds and sedges. *Echinochloa colonum, Cynodon dactylon, Cyperus rotundus, Eclipta alba, Euphorbia hirta* were the main weeds. The best weed control was done by hand weeding but this was cost effective. So, alternatively the post emergence herbicides gave good result to control weeds and they were less costly. In case of weed control Fenox-a-prop-p-ethyl and Almix gave good result and the highest weed control efficiency obtained by Bispyribac sodium. The plant growth factors-plant height, no. of tillers per plant, no. of panicles per plant, no. of filled grains per panicle, panicle length were more in case of hand weeding which was at par with Fenox-a-prop-p-ethyl, Azimsulfuron and Almix. The hand weeded plots resulted in high grain yield and straw yield as compared to control.

Key words: Post emergence, weed flora, predominant, Almix, Azimsulfuron, Bispyribac sodium, Fenox-a-prop-p-ethyl and hand weeding.

Introduction

Rice is one of the main cereal crops in the world and half of the population depends upon this for its dietary needs (Chakravati et al., 2012; Xiahong et al, 2017). It is a monocotyledonous angiosperm and belongs to the family Gramineae. Basmati rice is a special varietal group which separates itself from other rice varieties and widely accepted by people all over the world. In India, Punjab, Harvana, U.P., Uttrakhand are major states of basmati production. The area and production in India was 27 lakh hectares and 81 lakh tonnes (Kumar et al., 2012). In present scenario, the major problems in rice is infestation of weeds. Weed flora in rice consisted of 37% grasses, 33% sedges and 30% broad leaf weeds (Jay et al., 1991). In transplanted rice the main weeds, the field of rice infested with -Echinochloa colonum, Echinochloa crusgalli, Cyperus rotundus, Eleusine indica and Eclipta alba. Weed infestation results very low yield and quality of product is also affected. If the weeds are not controlled than it leads to 76% reduction in yield in transplanted rice (Singh et al., 2004). Weed spectrum and weed density differ according to the method under which rice is grown. Most of the weeds (60-70%) appeared in rice after 20-30 DAT and starts competing with main crop up to tillering stage. So, weeds are major constrain for transplanted rice and control and timely management is very important (Rao et al., 2007). For control of weeds so many methods are there. In hand weeding due to scarcity of labour and high wages, the weed control become difficult (Rao et al., 2007). As compared to mechanical and cultural control chemical control of weeds is suitable. Chemical weed control is becoming popular due to their fast effect and low expenditure. Post emergence herbicides are available which differed in selectivity and mode of action. The selection of herbicides based on the major weed flora and their response to herbicides. Any how many pre emergence herbicides are available for controlling weeds in transplanted rice, but for the efficacy the water should

Fig. 1 : Wrinkle grass.

Fig. 2 : Barnyard grass.

Fig. 3 :. Echinochloa sp.

Fig. 4 : Ghueen.

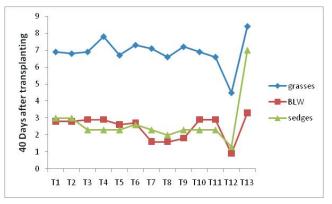
Fig. 5 : Eclipta alba.

be continuously stagnated. So, there is a need of post emergence herbicides of high efficacy to control weed emerged during the growth stages in transplanted rice. So, keeping this thing in view a field experiment was conducted to study the effect of post emergence herbicides application on weeds of rice crop. The major objectives of the study was to find out the suitable herbicide for the control of weeds in rice, to examine weed flora of rice and weed control efficiency of various post emergent herbicides in rice.

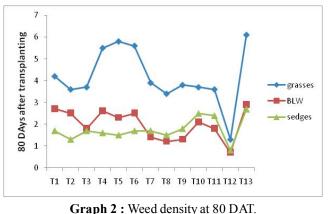
Materials and Methods

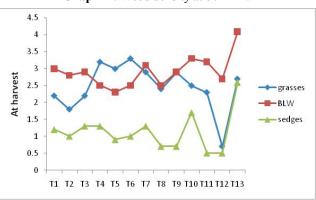
A field experiment was conducted during June 2015 to Nov. 2015 at experimental farm of School of Agriculture, Lovely Professional University, Phagwara. The soil was sandy loamy in texture with medium available N high phosphorous and potash.Soil was sufficient with all micronutrients. The experimental site enjoys subtropical type of weather. The treatments include four herbicides at different doses, hand weeding and control. The experiment comprised with 13 treatments viz. T1–Bispyribac sodium 10 SC @ 20 g a. i./ha, T2–Bispyribac sodium 10 SC @ 25 g a. i./ha, T3–Bispyribac sodium 10 SC @ 30 g a. i./ha, T4–Azimsulfuron 50 DF @ 25 g a. i./ha, T5–Azimsulfuron 50 DF @ 30 g a. i./ha, T6–Azimsulfuron 50 DF @ 35 g a. i./ha, T7–Almix @ 3 g a. i./ha, T8–Almix @ 4 g a. i./ha, T9–Almix @ 5 g a. i./ha, T10–Fenox-a-prop-p-ethyl @ 56 g a. i./ha, T11–Fenox-

a-prop-p- ethyl @ 60 g a. i./ha, T12–Hand weeding (20 and 40 DAT) and T13–Control. The experiment was laid out in a randomized complete block design with three replications. *Pusa Basmati* 1121 was the variety used for trial and transplanted on 15 July 2015 with aspacing of 20×10 cm and harvesting was doneon 22 November 2015.

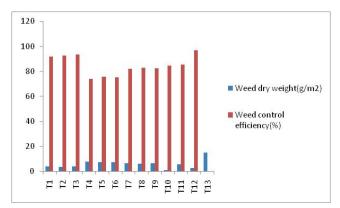

The requirement of N:P:K-43:25:25 kg/ha was fulfilled by the application of urea, SSP and MOP. The full dose of phosphorous and potash applied was applied at the time of sowing and nitrogen was applied in two splits-21 and 42 DAT. The herbicides were sprayed by using a knapsack sprayer in 500 litre water/ha. The herbicides were sprayed after 25DAT. Weed density of major weeds was recorded at 40 DAT, 80 DAT and at harvest by quadrate count method. The quadrate of $0.25m^2$ was randomly placed at 3-4 places in each plot and total weed density was recorded according to the species. The data on weed count was subjected to squareroot transformation and expressed in number in per sq.m. The data collected on various parameters were shown in form of graphs /tables and analysis was done by using analysis of variance and treatments were tested by using F-test.

Results and Discussion


Effect of herbicides on weed population, density Weed control efficiency and dry matter production


The main weed flora was found in experimental plot mainly comprised with grasses, sedges and broad leaf weeds. The main weeds found were - Grasses-*Echinochloa crusgalli* (Swank), *Echinochloa colonum* (Barnyard grass) and *Ischaemum rugosum* (Wrinkle grass). Sedges were *Cyperus iria* (Chatri wala dila), *Cyperus rotundus* (Nut grass), *Cyperus difformis* (Dila motha) and *Cyperus compressus* (Motha). Broadleaf weeds were *Eclipta alba* (Jalbhang grass), *Eleocharis atropuea* (Ghueen), *Euphorbia hirta* (Dhodhak)and *Ludwigia axillaris* (Gharilla) (Sidhu, 2008; Jaswal *et al.*, 2017).

Out of these weed species grasses were the predominant weed sp. Among the grasses, *Echinochloa* sp. was the man weed because it is a crop associated weed, which survives well in flooded situation and also a mimicry weed of rice (Singh and Singh, 2010; Hussain *et al.*, 2008). Most of the rice area covered by rice plants about 45 DAT and weed growth reduced. All the herbicides are post emergent in action and were sprayed at 20-25 DAT. So, when the observations on weed population were recorded at 40DAT, 80 DAT and at harvest so reduction in the density of weeds in all


Graph 1 : Weed density at 40 DAT.

Graph 3 : Weed density at harvest.

treatments was recorded (Graph 1). Maximum reduction in the weed density wasrecorded in hand weeding. This practicehelped in eradication of weeds. At crop harvest, hand weeding twice resulted in lower densityof weeds which remained at par with Bispyribac sodium, Almix andFenox-a-prop-p-ethyl. Similarly, Fenox-a-prop-p-ethyl @ 60 g a. i/haalso able to control most of *Echinochloa* species, but ineffective to control the broad leaf weeds. The sedges were completely controlled by Almix and Azimsulfuron at 40, 80 DAT and at harvest (Graph 2). Almix and Azimsulfuron just after one week of its application reduced the density of *Cyperus* sp. due to its broad spectrum nature and its effectiveness in controlling sedges as reported by Yadav *et al.* (2010). After the

Graph 4 : Weed dry weight and weed control Efficiency.

S.no.	Treatments	Plant height (cm)	Tillers (no.)	No.of panicles/ plant	Filled grains/ panicle	Panicle length(cm)	Panicle weight(g)
T1	Bispyribacsodium10 SC	104.0	30.6	46.6	77.3	20.3	2.2
T2	Bispyribac sodium10 SC	110.5	32.0	47.0	84.0	22.8	2.3
T3	Bispyribac sodium10 SC	107.5	30.3	45.3	77.3	21.2	2.2
T4	Azimsulfuron 50 DF	111.5	31.0	45.3	82.6	20.3	2.6
T5	Azimsulfuron 50 DF	111.1	32.6	46.3	86.0	21.1	2.7
T6	Azimsulfuron 50 DF	108.3	30.6	45.6	89.0	20.5	2.5
T7	Almix	107.4	30.3	47.3	76.6	20.6	2.7
T8	Almix	112.5	32.6	46.3	87.3	21.1	2.7
T9	Almix	113.6	30.0	46.6	81.0	21.0	2.7
T10	Fenox-a-prop-p-ethyl	117.2	32.0	45.3	94.4	20.8	2.6
T11	Fenox-a-prop-p-ethyl	118.7	33.0	46.3	97.6	20.8	2.8
T12	Weed free (HW)	143.9	34.6	48.3	114.3	25.8	3.2
T13	Control	103.1	27.0	41.0	65.0	18.6	1.8

 Table 1 : Effect of herbicides on plant growth parameters.

application of herbicides, the weeds become inactive and show the symptoms like chlorotic and necrotic spots on leaves and reduction in the weed weight. These observations are similar to the findings of Singh et al. (2004) and Yadav et al. (2009), who reported better efficacy of Azimsulfuron and Almix on sedges in transplanted rice. The lowest weed density was recorded in Azimsulfuron @30g a.i/ha. Fenox-a-prop-p-ethyl resulted low efficacy to control broad leaf weeds due to its effectiveness to control grasses only. It was found that all the herbicides were effective against Echinochloa, the major weed of rice. The highest weed count was registered in control. Fenox-a-prop p-ethyl, registered higher total weed population next to control. Fenoxaprop controlled only grasses and hence the high weed count is attributed to the broad leaved weeds and sedges. At harvest stage, the lowest weed count was recorded in hand weeded control as well as in Almix and Bispyribac sodium sprayed plots showing that Almix and Bispyribac sodium is as effective as hand weeding twice in

Almix. The less no. of tillers recorded in un weeded control. The maximum number of panicles per plant (48.3)was recorded in hand weeding which was followed by Bispyribac sodium 10 SC @ 25 g a. i./ha, Fenox-a-propp-ethyl @ 60 g a. i./ha. Hand weeding treatments increased the panicle weight, because there was more number of filled grains per panicle, which accounted for more panicle weight, as also reported by Bali et al. (2006) (table 1). 1000-grain weight and number of filled grains were recorded maximum in hand weeded plots. Hand weeding treatment resulted in the highest grain and straw yield. Similar results were also recorded by Hasanuzzaman et al. (2009). However, in this study, it was observedthat Fenox-a-prop-p ethyl treatment resulted insignificantly higher grain and straw yield which was at par with Azimsulfuron (table 2).

suppressing weed population (graph 3). Similar results

were also reported by Yadav et al. (2009). However, at

the harvest stage, the number of sedges was lower in Azimsulfuron compared to others showing its

effectiveness in controlling sedges as reported by Yadav

et al. (2010). Weed biomass at 60 DAT and at harvest

was significantly higher in unweeded plots. In contrast,

hand weeding twice recorded lower weed biomass than

rest of the herbicide among the tested herbicides,

Bispyribac sodium 10 SC @ 20, 25 and 30 g applied at 22

DAT showed highest weed control efficiency (Graph 4). The highest plant height was recorded in hand weeded

plots which was at par with Fenox-a-prop p-ethyl and

Conclusion

The highest WCE (90%) as well as grain yield (5964kg/ ha) was recorded in hand weeded control.

S.no.	Treatments	1000 grain weight(g)	Grain yield(kg/ha)	Straw yieldKg/ha	Harvest index (%)
T1	Bispyribacsodium10 SC	21.6	3633.3	5323	40.6
T2	Bispyribac sodium10 SC	23.3	4184.0	5562	42.9
T3	Bispyribac sodium10 SC	22.2	3833.0	5664	40.3
T4	Azimsulfuron 50 DF	26.4	4733.3	5881	44.5
T5	Azimsulfuron 50 DF	27.4	4822.3	6125	42.9
T6	Azimsulfuron 50 DF	25.1	4455.3	6068	40.0
T7	Almix	28.2	3893.0	5149	47.2
T8	Almix	27.1	4241.6	5116	45.3
T9	Almix	27.0	3724.0	5130	47.4
T10	Fenox-a-prop-p-ethyl	26.6	5210.6	5725	47.5
T11	Fenox-a-prop-p-ethyl	28.8	5639.6	6057	48.2
T12	Weed free (HW)	32.0	5964.0	6327	48.5
T13	Control	20.8	2697.6	4278	38.6

Table 2 : Effect of herbicides on yield contributing characters.

However, this yield was statistically on par with Almix and Fenox-a-prop p-ethyl and Almix (5.8 Mg ha⁻¹), which recorded a WCE of 88 and 90 percentage. It can also be inferred that if grasses are the dominant weed flora, Fenox-a-prop-p-ethyl without follow up spray of Almix can be recommended for effective weed control.All the herbicides irrespective of mode of application *i.e.* pre- or post-emergence reduced the weed density over control. The best results were obtained by hand weeding, but it proved a costly method. This study showed that postemergence herbicide was an alternative with respect to yield of *basmati* rice, weed control, as well as benefit:cost ratio to hand weeding.

References

- Bali, A. S., M. Singh, D. Kachroo, B. C. Sharma and D. R. Shivran (2006). Efficacy of herbicides in transplanted, mediumduration rice (*Oryza sativa* L.) under sub-tropical Conditions of Jammu. *Indian J. Agron.*, 14 (1): 96-98.
- Barret, S. C. H. and D. E. Seaman (1980). The weed flora of Californian rice fields. *Aquatic Bot.*, **9** : 351-376.
- Gill, H. S. and Vijayakumar (1969). Weed index- a new method for reporting weed control trial. *Indian J. Agron.*, **51(2)**: 128-130.
- Chakrawarti, S. K., H. Kumar, J. P. Lal and M. K. Vishwakarma (2012). Induced mutation in traditional aromatic ricefrequency and spectrum of viable mutations and characterizations of economic values. *Anim. Plant Sci.*, 18: 2-3
- Davla, D., N. Sasidharan, S. Macwana, S. Chakraborty, R. Trivedi, R. Ravikiran and G. Shah (2013). Molecular characterization of rice (*Oryza sativa* L.) genotypes for salt tolerance using microsatellite markers. *The Bioscan.*, 8(2): 498-502.

Efficacy of PIH 2023 (2007). Penoxsulam and Azimsulfuron for

post emergence weed control in wet direct seeded rice. In: *Proceedings of ISWS Bienniel Conference on New and Emerging Issues in Weed Science*, 2-3November 2007, CCSHAU, Hisar, p. 92.

- Gnanavel, I. and R. Anbhazhagan (2010). Bio-efficacy of Pre and Post-emergence Herbicides in Transplanted Aromatic Basmati Rice. *Res. J. Agril. Sci.*, **1(4)**: 315-317.
- Gomez, A. K. and A. A. Gomez (1984). *Statistical Procedures* for Agricultural Research (2nd edn) John
- Gomez, K. A. and A. A. Gomez (1984). *Statistical procedures* for Agricultural Research. A Willey Interscience Publication, J. Willey and Sons, New York. pp 108-127.
- Halder, J. and A. K. Patra (2007). Effect of chemical weed control methods on productivity of transplanted rice. *Indian J. Agron.*, 52(2): 111-113.
- Jadhav, A. B., R. Gupta and P. Katiyar (2008). Effect of weed controlon weed growth and grain yield of transplanted rice. *Advances of Plant Sci.*, **21**: 289-290.
- Jaswal (2017). Impact of different herbicides on transplanted *basmati* rice in atypichaplustept soil of Punjab, India. *Res. on Crops*, **18** (4) : 583-588 (2017)
- John, P. S. and N. Sadanandan (1989). Effect of application of 2,4-D mixed with urea in low land direct sown rice. *Agric. Res. J. Kerala*, **27**: 44-46
- Joy, P. P., E. K. Syriac, P. J. Ittyaverah and C. A. Joseph (1993). Herbicidal technology for weed control in low land rice of Kerala. In: *Proceedings of the 5th Kerala Science Congress,* January 1993, Kottayam. Kerala State Council for Science, Technology and Environment, pp. 135-137
- Joy, P. P., E. K. Syriac, P. K. C. Nair and C. A. Joseph (1991). Weed control in wet seeded rice in Kerala, India. *IRRI Newsl.*, 16(6): 25.
- Khodayari, K., P. Nastasi and J. R. Smith (1989). Fenoxaprop for grass control in dry seeded rice. *Weed Technol.*, **3(1)** : 242-250.

- Kim, K. U. and K. H. Park (1996). Biology of paddy weeds. In: Auld, B.A. and Kim, K.U. (eds.), *WeedManagement in Rice*. FAO Plant Production and Protection Bulletin Paper 139. Oxford and IBH, New Delhi, pp. 9-23
- Kim, T. J., H. S. Chang, J. W. Ryu, Y. K. Ko, C. H. Park, O. Y. Kwon and B. J. Chung (2003). Metamifop- A new postemergence grass killing herbicide for use in rice. In: *Proceedings of International Congress*, SECC, Glasgow, Scotland, UK, 10-12 Nov. 2003, pp. 81-86
- Kiran, Y. D., D. Subramanyam and V. Sumathi (2010). Growth and yield of transplanted rice (*Oryza sativa*) as influenced by sequential application of herbicides. *Indian J. Weed Sci.*, 42(3&4): 226-228.
- Mukharjee, D. and R. P. Singh (2005). Effect of micro herbicides on weed dynamics, yield and economics of transplanted rice. *Indian J. Agron.*, 50(4): 292-295.
- Narwal, S., S. Singh, K. S. Panwar and R. K. Malik (2002). Performance of acetachlor and anilofos + ethoxysulfuron for weed control in transplanted rice (*Oryza sativa* L.). *Indian J. Agron.*, 47(1):67-71.
- Patra, A. K., J. Haldar and S. K. Tripathy (2006). Chemical weed control in transplanted rice in Hirakund command area. *Ann. Agric. Res. New Ser.*, 27(4): 385-388.
- Rahman, M., A. S. Juraimi, A. S. M. Jaya Suria, B. M. Azmi and P. Anwar (2012). Response of weed flora to different herbicides in aerobic rice system. *Scientific Res. Ess.*, 7(1): 12-23.
- Rawat, A., C. S. Chaudhary, V. B. Upadhyaya and V. Jain (2012). Efficacy of bispyribac-sodium on weed flora and yield of drilled rice. *Indian J. Weed Sci.*, 44(3): 183-185.
- Saini, J. P. (2003). Efficacy of pyrazosulfuron-ethyl against mixed weed flora in transplanted rice. *Pesticide Res. J.*, 15: 157-159.
- Saini, J. P. (2005). Efficacy of cyhalofop butyl alone and in combination with 2,4-D against mixed weed florain direct seeded upland rice. *Indian J. Agron.*, **50**: 38-40.
- Sindhu, P. V. (2008). Eco-friendly management of weeds in rice. Ph D thesis, Kerala Agricultural University, Thrissur, Kerala, India. 274p.

- Singh, M. and R. P. Singh (2010). Efficacy of herbicides under different methods of direct seeded rice establishments. *Indian J. Agric. Sci.*, 80 : 815-819.
- Singh, V. P., S. Govindra and S. Mahendra (2004). Effect of fenoxapropp-ethyl on transplanted rice and associated weeds. *Indian J. Weed Sci.*, 36(1/2): 190-192.
- Singh, V. P., G. Singh and M. Singh (2004). Effect of fenoxapropp-ethyl on transplanted rice and associated weeds. *Indian J. Weed Sci.*, **36** : 190-192.
- Smith, R. J. (1981). Control of red rice in water seeded rice (*Oryza sativa*). *Weed Sci.*, **29**: 663-666.
- Yadav, D. B., A. Yadav, R. K. Malik and G. Gill (2007). *The Bioscan.*, **7(4)**: 739-742.
- Corbelt, J. L., S. D. Askew, W. E. Thomas and J. W. Wilcut (2004). Weed efficacy evaluations for bromaxil, glufosinate, glyphosate, pyrithiobac and sulfosate. *Weed Technol.*, 18 :443-453.
- Viraputhirun, R. and R. Balasubramanian (2013). Evaluation of Bispryibac-sodium on transplanted rice. *Indian J. Weed Sci.*, **45(1)**: 12-15.
- Yadav, D. B., A. Yadav and S. S. Punia (2009). Evaluation of bispyribacsodium for weed control in transplanted. Wiley and Sons, New York,657p
- Yadav, D. B, A. Yadav and S. S. Punia (2009). Evaluation of bispyribac-sodium for weed control in transplanted rice. *Indian J. Weed Sci.*, 41(1&2): 23-27.
- Yadav, D. B., S. S. Punia and A. Yadav (2010). Efficacy of Bispyribac sodium, Azimsulfuron and Penoxsulam for post emergence weed control in transplanted rice. In: *Proceedings of the Bienniel Conference of ISWSon Recent* Advances in Weed Science Research, 25-26 February 2010, Indira Gandhi KrishiVishwavidyalaya, Raipur, p.75
- Zhang, W., E. P. Webster, D. C. Blouin and C. T. Leon (2005). Fenoxaprop interactions for barnyard grass (*Echinochloa crusgalli*) control in rice. *Weed Tech.*, **19(2)** : 293-297.